Invariant Multi-scale Object Categorisation and Recognition
نویسندگان
چکیده
Object recognition requires that templates with canonical views are stored in memory. Such templates must somehow be normalised. In this paper we present a novel method for obtaining 2D translation, rotation and size invariance. Cortical simple, complex and end-stopped cells provide multi-scale maps of lines, edges and keypoints. These maps are combined such that objects are characterised. Dynamic routing in neighbouring neural layers allows feature maps of input objects and stored templates to converge. We illustrate the construction of group templates and the invariance method for object categorisation and recognition in the context of a cortical architecture, which can be applied in computer vision.
منابع مشابه
Invariant Categorisation of Polygonal Objects using Multi-resolution Signatures
With the increasing use of 3D objects and models, mining of 3D databases is becoming an important issue. However, 3D object recognition is very time consuming because of variations due to position, rotation, size and mesh resolution. A fast categorisation can be used to discard non-similar objects, such that only few objects need to be compared in full detail. We present a simple method for cha...
متن کاملReal-Time Object Recognition Based on Cortical Multi-scale Keypoints
In recent years, a large number of impressive object categorisation algorithms have surfaced, both computational and biologically motivated. While results on standardised benchmarks are impressive, very few of the best-performing algorithms took run-time performance into account, rendering most of them useless for real-time active vision scenarios such as cognitive robots. In this paper, we com...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملGeneric Object Recognition based on Feature fusion in robot perception
A new generic object recognition (GOR) method for robot perception is proposed in this paper, based on multi-feature fusion of two-dimensional (2D) and 3D scale invariant feature transform descriptors drawn from 2D images and 3D point clouds. The trained support vector machine is utilized to construct multi-category classifiers that recognize the objects. According to our results, this new GOR ...
متن کاملMany-to-many feature matching in object recognition: a review of three approaches
The mainstream object categorisation community relies heavily on object representations consisting of local image features, due to their ease of recovery and their attractive invariance properties. Object categorisation is therefore formulated as finding, that is, ‘detecting’, a one-to-one correspondence between image and model features. This assumption breaks down for categories in which two e...
متن کامل